Home

tenn Angående Fiskmås sofia rahiminejad antenna array gap Justering handflatan Barnslig

Micromachines | Free Full-Text | Dry Film Photoresist-Based  Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide  Components
Micromachines | Free Full-Text | Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components

Page_Title_Here
Page_Title_Here

Terahertz Sensing
Terahertz Sensing

The measured H-plane radiation patterns in comparison with simulations....  | Download Scientific Diagram
The measured H-plane radiation patterns in comparison with simulations.... | Download Scientific Diagram

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost  Injection Molding and Micromachining
PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

PDF) Evaluation of losses of the Ridge Gap Waveguide at 100 GHz
PDF) Evaluation of losses of the Ridge Gap Waveguide at 100 GHz

PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost  Injection Molding and Micromachining
PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining

Dr. Sofia Rahiminejad | Science and Technology
Dr. Sofia Rahiminejad | Science and Technology

PDF) The SWE Gapwave antenna - A new wideband thin planar antenna for 60GHz  communications
PDF) The SWE Gapwave antenna - A new wideband thin planar antenna for 60GHz communications

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost  Injection Molding and Micromachining
PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining

Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn
Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

a) SEM image of SUEX ridge gap resonator with a pin height of 270 µm;... |  Download Scientific Diagram
a) SEM image of SUEX ridge gap resonator with a pin height of 270 µm;... | Download Scientific Diagram

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

Process flow used in the fabrication of the phased array. | Download  Scientific Diagram
Process flow used in the fabrication of the phased array. | Download Scientific Diagram

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz  Waves
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | Journal of Infrared, Millimeter, and Terahertz Waves

Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn
Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn